# The birthday problem and its application to breaking cryptographic hash functions.



### What is a hash function?

A hash function is a function f that takes an arbitrary-length input m, and produces a fixed-length output. The output f(m) is known as a hash value (referred to as simply a hash).

$$F: \{0,1\}^{\infty} \to \{0,1\}^n.$$

A small change in m resuls in a large change in f(m)

"hello world"  $\rightarrow~5eb63bbbe01eeed093cb22bb8f5acdc3$ "<br/>hello worle"  $\rightarrow~18c5650581f01f1a52c87eee5baa754a$ 

(md5 is used in the example)

In a perfect system, the output of the hash function is uniformly distributed over all inputs.

#### The birthday problem.

Suppose we have a room of m people what is the probability that two people will share a birthday? This problem can be more generally described using an urn. So suppose we have an urn with balls numbered 1 to m. If we take out the balls and note down the number, what is the probability of drawing the same ball twice. We call this a collision.

The probability that the *ith* ball is different from all the others is  $1 - \frac{i}{m}$ .

$$P(\text{no collisions}) = \prod_{i=0}^{k-1} (1 - \frac{i}{m})$$

if  $k \ll m : 1 - \frac{i}{m} \approx e^{-\frac{i}{m}}$  (using the taylor expansion of  $e^{-x}$ )

$$P(\text{no collisions}) \approx \prod_{i=0}^{k-1} (e^{-\frac{i}{m}})$$
$$= e^{-\sum_{i=0}^{k-1} \frac{i}{m}}$$
$$= e^{\frac{-k(k-1)}{2m}}$$
$$\approx e^{-\frac{k^2}{2m}}$$

P(collision) = 1 - P(collision)

$$= 1 - e^{-\frac{k^2}{2m}}$$

#### Breaking hash functions.

So how can we break hash functions? Well there are three main ways off attacking a hash function

Pre-image attack Given the hash value h, recover any m such that h = hash(m).

Second pre-image attack:

Given an input  $m_1$ , find another input  $m_2$  (such that  $m_1 \neq m_2$ ) such that  $hash(m_1) = hash(m_2)$ .

Collision attack

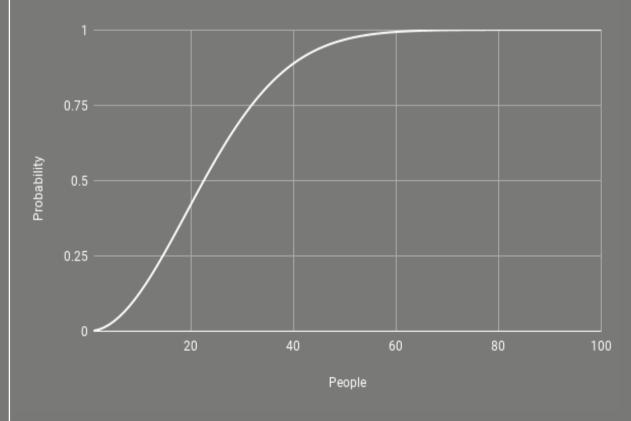
Find two different messages  $m_1$ ,  $m_2$  such that  $hash(m_1) = hash(m_2)$ .

## Generating collisions using the birthday problem.

We can perform a collision attack using the birthday party principle. If we say that the birthday bounds is the probability of the random collision. This means that on average we have a much faster brute force system than we did before. As we can see from the table below, the search space of our algorithm is a lot smaller than the traditional brute force system.

#### Birthday bound table Probability of random collision (p)

| Bits | Possible $outputs(m)$ | 0.001     | 0.01      | 0.25       | 0.5        | 0.75       |
|------|-----------------------|-----------|-----------|------------|------------|------------|
| 16   | $2^{16}$              | 11        | 36        | 190        | 300        | 430        |
| 32   | $2^{32}$              | 2900      | 9300      | 50000      | 77000      | 110000     |
| 64   | $2^{64}$              | 19000000  | 61000000  | 3300000000 | 5100000000 | 7200000000 |
| 128  | $2^{128}$             | 8.3E + 17 | 2.6E + 18 | 1.4E + 19  | 2.2E + 19  | 3.1E + 19  |
| 256  | $2^{256}$             | 1.5E + 37 | 4.8E + 37 | 2.6E + 38  | 4E + 38    | 5.7E + 38  |
| 512  | $2^{512}$             | 5.2E + 75 | 1.6E + 76 | 8.8E + 76  | 1.4E + 77  | 1.9E + 77  |



let p = P(collision)

$$\ln(1-p) = e^{\frac{-k^2}{2m}}$$
$$2m\ln(1-p) = -k^2$$
$$k = \sqrt{-2m\ln(1-p)}$$

when p = 0.5, m = 365 (as in the original birthday problem),  $\sqrt{-2 * 365 * \ln(1 - 0.5)} = 22.49$  (2 d.p).

#### References:

http://math.sun.ac.za/wp-content/uploads/2011/10/mmile\_writeup.pdf http://www.winlab.rutgers.edu/comnet2/Reading/documents/Birthday\_attack.pdf http://wdsinet.org/Annual\_Meetings/2017\_Proceedings/CR%20PDF/cr88.pdf http://www.pumj.org/docs/Issue1/Article\_3.pdf https://blockgeeks.com/guides/cryptographic-hash-functions/

David Jay