The birthday problem and its application to breaking cryptographic hash functions

What is a Hash Function?

What is a Hash Function?

$$F: \{0,1\}^{\infty} \to \{0,1\}^n$$
.

What is a Hash Function?

"hello world" → 5eb63bbbe01eeed093cb22bb8f5acdc3 "hello worle" → 18c5650581f01f1a52c87eee5baa754a

using the md5 hashing algorithm

Preimage resistance

- Preimage resistance
- Second preimage resistance

- Preimage resistance
- Second preimage resistance
- Collision resistance

- Preimage resistance
- Second preimage resistance
- Collision resistance
- Uniformly distributed

What are Hash Functions used for?

Cryptography

Validation of message integrity

Hash tables

Breaking hash functions.

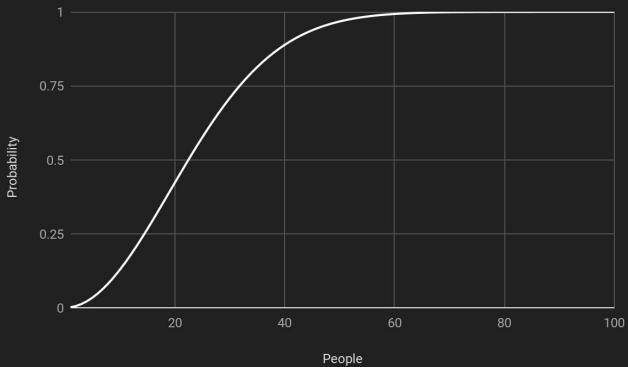
Preimage attack

Types of attack: Second preimage attack

Collision attack

What is the Birthday Party Problem?

Let's do some maths!



P(no collisions) =
$$\prod_{i=0}^{k-1} (1 - \frac{i}{m})$$

$$P(\text{collision}) = 1 - P(\text{no collision})$$
$$= 1 - e^{-\frac{k^2}{2m}}$$

Football?

Australia

Brazil

Costa Rica

Croatia

England

France

Germany

IR Iran

Korea Republic

Morocco

Nigeria

Peru

Poland

Portugal

Russia

Spain

John Stones

Kyle Walker

Breaking hash functions with a birthday attack.

$$k = \sqrt{-2m\ln(1-p)}$$

Probability of random collision (p)

Bits	Possible outputs (m)	0.10%	1%	25%	50%	75%
16	6.55E+04	11	36	190	300	430
32	4.29E+09	2.90E+03	9.30E+03	5.00E+04	7.70E+04	1.10E+05
64	1.84E+19	1.90E+08	6.10E+08	3.30E+09	5.10E+09	7.20E+09
128	3.40E+38	8.30E+17	2.60E+18	1.40E+19	2.20E+19	3.10E+19
256	1.16E+77	1.50E+37	4.80E+37	2.60E+38	4.00E+38	5.70E+38
512	1.34E+154	5.20E+75	1.60E+76	8.80E+76	1.40E+77	1.90E+77

How can combat this attack?

Thanks, any questions?

Refs:

http://math.sun.ac.za/wp-content/uploads/2011/10/mmile_writeup.pdf http://www.winlab.rutgers.edu/comnet2/Reading/documents/Birthday_attack.pdf http://wdsinet.org/Annual_Meetings/2017_Proceedings/CR%20PDF/cr88.pdf http://www.pumj.org/docs/lssue1/Article_3.pdf https://blockgeeks.com/guides/cryptographic-hash-functions/