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Abstract

As techniques for hiding information (steganography) become increas-

ing more di�cult to detect along with much higher resolution carrier im-

ages being used, statistical approaches to the detection of steganography are

becoming more and more complex. We propose a technique for the detec-

tion of the F5 steganographic algorithm by using a simpler set of statistics

than previous methods. We do this by classifying the images using a neu-

ral network using the simpler statistics as input. We show that, the neural

network can successfully detect the presence of the F5 steganographic algo-

rithm regardless of the size of the payload that is encoded in the image and

that if the complexity of the statistics is increased, the accuracy increases.

1 Introduction

Steganography is the art of hiding information inside other information. No-
table examples of steganography include technologies such as invisible ink and
microdots (both traditionally used by spies). More recently, there was evidence
of steganography being used by Russian spies in the US to communicate with
their handlers back in Russia [Pincus, 2010]. With the increasing popularity of
social media and therefore number of images on the internet, the opportunity
to use steganography is only going to increase.

Figure 1: Picture with several types of flowers, used by Richard Murphy to
communicate with SVR center. [FBI, 2012]

Neural networks are algorithms that “learn” patterns in data by loosely mod-
elling neurons in a brain, they perform exceedingly well at learning non-linear
tasks. Neural networks have become recently very popular starting with AlexNet
[Krizhevsky et al., 2012] at the 2012 ImageNet competition [Russakovsky et al.,
2015a]. The availability of large datasets and lots of processing power (GPUs)
has allowed neural networks to take o↵ since their discovery in 1958 by Frank
Rosenblatt.
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Due to the fact that steganalysis (the study of discovering steganography) has
become more and more statistically complex, it was decided to explore to what
extent a more developed classification algorithm (neural networks) could make
up for a statistically less complex feature while trying to detect the presence of
the F5 steganographic algorithm [Westfeld, 2001a]. If classification algorithms
can indeed make up for a less statistically complex feature set, it could mean
that these techniques could be used for more di�cult steganographic algorithms.
This may allow current techniques, with simple classification algorithms, to
become more successful when using a complex classification algorithm.

This paper will look at di↵erent aspects of the background and mechanisms
behind steganography (including the JPEG compression standard), neural net-
works and steganalysis. Then the method will be described and justified and
the data will be analysed. Finally the results and implications of them will be
explained.
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2 Literature Review

2.1 Steganography

2.1.1 What is Steganography?

Steganography, which derives from the compound of two Greek words: stegos
which translates to “covered”, and grafia which translates to “writing”, meaning
it literally translates to “covered writing”. The field of Steganography comprises
of techniques to hide messages inside inconspicuous data so that the message
can be transmitted to another party without the presence of a message being
detected by a third party. A steganographic message is made up of a cover and
a message [Bandyopadhyay et al., 2008]. The message is hidden inside of the
cover data which can be anything from images to text to TCP packets [Handel
and Sandford, 1996].

Figure 2: Example of steganography

An exemplary steganographic thought experiment was proposed by Simmons,
called The Prisoner’s Problem [Simmons, 1984], where two inmates communi-
cate in secret to a hatch an escape plan. All of their communication passes
through a warden who will throw them in solitary confinement should she sus-
pect any covert communication [Morkel et al., 2005]. The warden has access to
all of the messages that the two suspects pass each other. The warden can either
be active or passive. An active warden will try and change the data that is be-
ing sent if she suspects that information is hidden in it, while a passive warden
will observe and take note without blocking the message. This illustrates the
main axis upon which steganographic algorithms are judged: undetectability
and resistant to container change.

2.1.2 The History of Steganography.

Steganography is far from a new technique; it has been used for centuries
with the first known recorded application dating back to the Ancient Greeks.
Herodotus writes of a messenger who had a message tattooed onto the back of
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his head. When the hair grew back, the messenger was sent thus concealing the
presence of the message [Krenn, 2004].

Steganography became immensely popular at the beginning of the 20th Century.
During the first world war milk, vinegar and urine were all used to write secret
messages, which could be read if the letter was heated up. The microdot was
developed by Germany during the First and Second World Wars. The idea
behind it is to miniaturise a photo as much as possible so that it can be stored
in a typographical dot (hence the name microdot). It was often used to hide
vast amounts of information (normally in the full stop of a letter), that was then
collected by a spy, so that it could be transmitted back to their home country.
[Kipper, 2003]

More recently, steganography became increasingly popular as a deniable method
to store information. It has also been used to complement cryptographic tech-
niques to make data even more secure at it travels, allowing another layer before
the data is found and decrypted. For this reason it has been speculated that
terrorist organisations and governments may use it to transmit sensitive data
[Krenn, 2004].

In addition to this, some steganographic techniques have been implemented in
watermarking and fingerprinting to allow companies to track their documents or
enforce their copyright. Even though watermarking does not necessarily conceal
the knowledge of the hidden information, aside from the human senses [Johnson
and Jajodia, 1998], steganographic techniques are often still used.

Throughout the history of steganography and image steganography people have
tried to optimise their algorithms to increase their e↵ectiveness. This, coupled
with the large number of image types and di↵erent data compression algorithms,
has led to a plethora of types of image steganography.

2.1.3 Types of Image Steganography

Image steganography techniques can be divided into two groups: Image Domain
and Transform Domain [Silman, 2001].

Figure 3: Types of Image Stegonography
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2.1.3.1 Image Domain
Image domain techniques hide the messages in the pixel values themselves. The
image formats most suitable for image domain steganography are lossless and
the techniques are typically dependent on the image format [Abraham et al.,
2004].

2.1.3.1.1 Least Significant Bit
Least significant bit (LSB) steganography is the most popular image (or spatial)
domain technique and the easiest to implement. The LSB refers to the lowest
significant bit of an image pixel. The concept of LSB exploits the fact that the
level of precision in many image formats is far greater than that perceivable
by the average human [Gupta et al., 2012]. This means that if we encode the
messages in the least significant bit of the pixel values it will not be noticed by
the human eye as the pixel value will change imperceptibly.

2.1.3.1.2 Transform Domain
Transform domain is a more complex way of hiding information in an image.
Most of today’s strong steganographic systems today operate within the trans-
form domain. Transform domain have an advantage over spatial domain tech-
niques as they hide information in areas of the image that are less exposed to
compression, cropping and image processing [Raval et al., 2017]. This paper
will mainly focus on discrete cosine transform techniques and only be a brief
mention of discrete wavelet transform will be made.

2.1.3.1.3 Discrete Wavelet Transform (DWT)
Wavelet transform is used to convert a spacial or image domain into a transform
domain. The wavelet transform is useful because it separates high frequency and
low frequency information on a pixel by pixel basis [Reddy and Raja, 2009].

2.1.3.1.4 Discrete Cosine Transform (DCT)
This steganographic technique is almost exclusively used with JPEG images.
During the DCT phase of JPEG compression, rounding errors occur in the co-
e�cient data that are not noticeable [Johnson and Jajodia, 1998]. This property
can be used to hide messages. Using LSB insertion the message can be embed-
ded into the least significant bits of the DCT coe�cients [Krenn, 2004] just the
Quantization stage of JPEG compression.

2.1.4 Examples of Steganographic Algorithms

2.1.4.1 Jsteg
Jsteg hides data inside images stored in the JFIF format of the JPEG standard.
Before Jsteg, JPEG steganography was seen as impossible due to the lossy
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nature of the file. Jsteg works by recognising that JPEG encoding is split
into lossy and non-lossy stages. Therefore Jsteg can insert the steganographic
data into the image data between the lossy and non-lossy steps without risking
corruption. [Upham, 1997]

The storage e↵ectiveness for this steganographic technique is reasonable, but
not astounding. An N kilobyte data file fits in the image when the resulting
JPEG/JFIF file is around C*N kilobytes, where C ranges from eight to ten.
[Upham, 1997]

2.1.4.2 F5
The F5 algorithm, like Jsteg, hides data inside images stored in the JFIF format
of the JPEG standard. In many cases, an embedded message does not require
the full capacity of an image. Therefore, a part of the file remains unused.
The F5 algorithm encodes data in the image so that the density of data is as
regular as possible. This means that the embedding density should be the same
everywhere [Westfeld, 2001b]. F5 can hide a lot more information in an image
than Jsteg.
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2.2 JPEG

As has been mentioned previously, this paper is going to focus on detecting
DCT-based steganography. As JPEG is the most common image compression
format that uses DCT techniques as part of its compression. This section will
focus on how JPEG uses DCT to compress images and explain the purpose of
the discrete cosine transform.

2.2.1 What is JPEG/JFIF?

Joint Photographic Experts Group (JPEG) is an image compression standard
created in 1992 by the JPEG committee [Wallace, 1992]. The JPEG standard
can be used to compress either full-colour (3 channel) or grayscale (1 channel)
images [Wallace, 1992].

JPEG images are almost always compressed using lossy compression (lossy file
compression results in lost data and quality from the original version [Chris-
tensson, 2006]), although the JPEG standard supports a lossless encoding it
is not very common. The lossy compression allows JPEG images to be very
small while retaining good quality. For this reason, JPEG images are the most
commonly saved format by digital cameras and have become very popular with
the rise of the internet.

JPEG File Interchange Format (JFIF) is an image file format standard. Image
data inside of JFIF files are compressed using the JPEG standard hence JPEG
and JFIF are often used interchangeably.

Figure 4: Di↵erent Compression Levels of a JPEG image

2.2.2 How does JPEG Compression Work?

JPEG compression is a complicated and multi step process so this explanation
will cover standard full colour images and therefore ignores progressive encoding
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and other more complex encoding techniques. Firstly, the image is converted
from Red, Green and Blue (RGB) colour channels to luminance (Y) and two
chrominance channels: Blue/Yellow (Cb) and Red/Green (Cr).

Figure 5: Demonstration of Y Cb Cr splitting of an image [Guillermito, 2004].

Due to the fact that the human eye is more sensitive to luminosity than it is to
chrominance [Winkler et al., 2001] a step known as downsampling can be taken
which takes adjacent pixels and combines them into one to remove information
that is unnecessary for the human eye [Kerr, 2005].

The Discrete Cosine Transform (DCT) and the Quantisation process are the
main parts of the compression. The channel is broken into 8x8 blocks of coe�-
cients. The DCT process is then applied to each block and each block is then
quantized. The DCT works by separating images into parts of di↵ering fre-
quencies [Cabeen and Gent, 1998]. The quantization process is the main reason
why JPEG images are “lossy” as accuracy of the DCT value is being reduced.
Quantization is performed on the DCT coe�cients by dividing the matrix by
a quantisation matrix that has been predetermined for maximum performance
and then rounding the values to the nearest integer value. The quantised values
are where most Transform Domain steganography tools store their data.

Next, the matrix is reordered in a zigzag ordering pattern 5 to allow for the
maximum number of zeroes next to each other to allow for better compression
during the next step of compression. Finally this process is repeated on each of
the Y Cb Cr layers of the image. ([Guillermito, 2004] including the image)
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Figure 6: The zig-zag ordering of the 8x8 block of quantised DCT coe�cients.

Finally, RLE (run length encoding) is used to compress the high frequency
coe�cients (such as the large number of zeroes) DPCM (Di↵erential Pulse Code
Modulation) is used to compress low frequency coe�cients. Hu↵man coding is
then used to compress everything [Wallace, 1992].

Figure 7: Flow diagram detailing the steps of compression of a JPEG image.
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2.3 Artificial Neural Networks

Transform domain steganography is notoriously di�cult to detect. For this
reason this paper proposes the use of artificial neural networks to act as a
classification tool.

2.3.1 What are Artificial Neural Networks?

Artificial Neural Networks, also referred simply as neural networks (NN), are
built upon simple signal processing elements that are connected together [Berger,
2016] These elements form a complex and non-linear system that allow neural
networks to excel at classification tasks. There are three main NN topologies:
supervised learning, unsupervised learning and reinforcement learning. We will
focus on supervised learning.

2.3.2 How do Feed-Forward Neural Networks Work?

Neural networks are organised in layers. These layers are made up of intercon-
nected nodes which each apply a mathematical function called an activation
function to the input. The connections are weighted so that di↵erent nodes
gain di↵erent importances. These weights are what are optimised through the
learning process.

Figure 8: An example of a simple multi-layer feedforward network.

2.3.2.1 The Perceptron
A perceptron is a type of linear classifier used for supervised learning of binary
classifiers. It was invented by Frank Rosenblatt in 1957 [Rosenblatt, 1957].
The perceptron takes in multiple binary inputs, x1, x2, x3 in the case of 9, and
produce a binary output.
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Figure 9: An example of a 3 input perceptron.

Weights are used to train the network and signify the importance of that input
into the node. The neuron’s binary output is determined by the weighted sum
being less than or equal to, or greater than a threshold value. The threshold
value can be moved and called a bias instead.

output =

(
0 if

P
j

w

j

x

j

+ b  0

1 if
P

j

w

j

x

j

+ b > 0
Where b is the bias

Layers of perceptrons which act together produce significantly more complex
outputs than a single layer as each layer of perceptrons is making a decision
based on the decisions of the previous layers of perceptrons. This means that
decisions become more and more complex and the number of layers increase
[Nielsen, 2015].

2.3.2.2 ReLU Neuron
As we want small changes to be made to the output of the neurons with small
changes in the input, we add a nonlinear function ⇠(mx + c). Where ⇠ is the
ReLU function which is defined by:

⇠(x) = max (0, x)

Figure 10: [Krizhevsky et al., 2012]
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Figure 11: Graph of ⇠

2.3.2.3 Dropout
Dropout is a technique for reducing overfitting in neural networks (regularising).
With limited training data, however, many of these complicated relationships
will be the result of sampling noise, so they will exist in the training set but not
in real test data even if it is drawn from the same distribution. This leads to
overfitting and many methods have been developed for reducing it [Srivastava
et al., 2014]. Dropout work by, at each training stage, individual nodes are
either dropped out of the net so that a reduced network is left as illustrated by
Figure 12 [Budhiraja, 2016].

Figure 12: An example of a thinned neural network produced by applying
dropout. Crossed units have been dropped [Srivastava et al., 2014]

2.3.2.4 Softmax Classification
The softmax classifier is applied to the output layer of the network. Its purpose
is to return the probability of each class label.

2.3.2.5 Cost Function
The purpose of the loss or cost function is to gain a measurement of how well
the neural network is doing. An example cost function can be defined as:
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C(w, b) = 1
2n

P
x

||y(x)� a||2

Figure 13: Where ||v|| is the length function for vector v [Nielsen, 2015]

This particular cost function is often known as mean squared error.

2.3.2.6 Backward Propagation of Errors
Backward propagation of errors also known as backpropagation is an algorithm
for supervised learning of neural networks using gradient descent. Given an
error function and a neural network, backpropagation calculates the gradient
of the error function with respect to the network’s weights [McGonagle et al.,
nd]. Backpropagation is used to find a local minimum of the cost function of
the network.

2.3.3 Tools

2.3.3.1 Tensorflow
TensorFlow is an open source machine learning library, which means that most
of the mathematical computation of machine learning is handled by TensorFlow.
TensorFlow was originally developed by researchers and engineers working on
the Google Brain Team within Google’s Machine Intelligence research organiza-
tion for the purposes of conducting machine learning and deep neural networks
research (from: [Tensorflow, 2015]). Tensorflow is one of the industry standard
machine learning libraries. For example, Ebay, Dropbox, Google, DeepMind use
Tensorflow [Tensorflow, 2015] for both research and deployed machine learning.

2.3.3.2 Keras
Keras is a high-level neural network API, written in Python and capable of
running on top of TensorFlow. It was developed with a focus on enabling fast
experimentation. [Keras, 2018]. Using Keras allows for a very fast experimental
cycle which is key to good research and the reason why it was used in this study.
Keras is open source and is supported by Tensorflow.

2.3.4 Overfitting

Overfitting happens when a machine learning model learns the detail and noise
in the training data to the extent that it negatively impacts the performance
of the model on new data. This means that the noise or random fluctuations
in the training data is picked up and learned as concepts by the model. The
problem is that these concepts do not apply to new data and negatively impact
the models ability to generalise [Brownlee, 2017].
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Figure 14: The green line represents an overfitted model and the black line
represents a regularised model. While the green line best follows the training
data, it is too dependent on that data and it is likely to have a higher error
rate on new unseen data, compared to the black line [Wikipedia, 2018].

An example of overfitting is shown in Figure 14. Many techniques such as
dropout (as discussed in section 2.3.2.3) can be used to combat overfitting.
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2.3.5 Convolutional Neural Networks

2.3.5.1 What is a Convolutional Neural Network?
A convolutional neural network is a neural network that uses convolution oper-
ations to extract features of the input data. Because of the nature of convolu-
tional operators, convolutional neural networks preserve spatial data within the
data and therefore have become very popular in the image classification world
[Russakovsky et al., 2015b].

2.3.5.2 Structure of a Convolutional Neural Network.
The main parts of a convolutional neural network are:

1. Convolution layers

2. Non-linearity (In our case ReLU)

3. Pooling layers

4. Classification (Standard fully connected layers as described previously)

This basic classes of layers are the building block of every convolutional neural
network [cs231n, 2017]. As convolutional neural networks are mainly applied to
images, network structures have 3 dimensions (width, height, depth).

Figure 15: A simple convolutional neural network for image classification.
[Karn, 2017]

2.3.5.3 Convolutional layer
This is where most of the computational “heavy lifting” is done in the network.
The primary purpose of the convolution in our network is to extract features
from the image. Every image can be considered as a matrix of pixels. There for
the convolution of that matrix can be computed using a smaller matrix as our
kernel.
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(a) 5x5 data matrix.

(b) 3x3 filter matrix.

Figure 16: An exaple of a matrix to convolute (5x5) and a filter (3x3)

Consider this 5x5 data matrix and 3x3 convolutional matrix [Karn, 2017] figure
16. The convolution of the 5x5 data matrix and the 3x3 convolution matrix
(known as the filter or kernel) can be computed by passing the 3x3 matrix over
the 5x5 data matrix. The resulting product is known as the feature map.

Figure 17: An example of the convolution process. [UFLDL, 2013]

2.3.5.4 Pooling
Spatial Pooling layers progressively reduce the spatial size of the data matrix
to reduce the amount of parameters and computation in the network. The
MAX operation is commonly used as a mathematical operation to pool the
data [cs231n, 2017]. Di↵erent pool sizes can be used to downsample the data
even rapidly but at the cost of fine tuning.
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Figure 18: An example of a simple Convolutional Neural Network in action.
[Karn, 2017]

The combination of all of these elements allows convolutional neural networks
to learn from large datasets while still keeping positional elements leading to
their prominence in image classification tasks.
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2.4 Steganalysis

Steganalysis is the process of detecting messages hidden with steganography
techniques. The goal of steganalysis is to identify whether data sets have a mes-
sage encoded in them and, if possible, recover the message. As more techniques
of hiding information are developed and refined, the techniques to detect them
also develop.

2.4.1 Techniques for Steganalysis

Steganalysis is generally tackled using statistical approaches. Spectrum analysis
can be used on lossless files but becomes less e↵ective when dealing with lossy
data formats. To combat this, when dealing with lossy formats steganalysis
usually looks for inconsistencies in the way that the data has been compressed.

In these cases, methods of steganalysis look for specific signatures in the images.
This can refer to a certain statistical property consistent in images that are
encoded using a specific program. For example, when plotting the non-zero
DCT coe�cients of a JPEG image, the result is a relatively smooth graph.
However, if we plot the non-zero DCT coe�cients created with Jsteg (2.1.4.1)
they produce a more erratic graph [Cole, 1997].

Cover image with no data encoded Cover image with data encoded

Figure 19: DCT histograms from an image with and without data encoded into
it.

2.4.1.1 Types of Steganographic attack

• Stego Only Attack: Only the stego-object is available to analyse.

• Known Cover Attack: The original cover image is available and can be
compared with the stego-object.

• Known Message Attack: The message is available. N.B.: The data
gathered by the knowledge of the message may be of negligible use and
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often Known Message Attacks are not distinguished from Stego Only At-
tacks.

• Chosen Stego Attack: The steganographic tool used to create the stego-
object is known.

• Known Stego Attack: The steganographic tool is known and both the
cover image and stego-object are available.

[Richer, 2003]

2.4.2 Steganalysis using Neural Networks

As neural networks are exceedingly good at approximations of nonlinear func-
tions, they can be used e↵ectively to assign importance to di↵erent statistical
features. Several spatial measures based on DCT are selected to allow the net-
work to use several measures to increase flexibility and accuracy [Shaohui et al.,
2003].
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3 Discussion

Due to the increasing complexity of statistical models to combat steganogra-
phy, it seemed that neural networks were very well suited for the detection of
complex steganographic algorithms because of their traditionally very good per-
formance in non-linear classification tasks (2.3.2.1). As the number of layers in
a network increase, the function that the network can model becomes increas-
ingly more complex as each successive layer uses the output from the previous
layer. The steganographic algorithm that was chosen to work on was the F5
algorithm [Westfeld, 2001a] due to its traditionally complex methods to break
the algorithm (estimating the DCT values of the cover image to then be able
to see discrepancies between the stego image and the original image) [Fridrich
et al., 2002].

Initially a neural network using a simple feature set was trained and tested on
the Caltech101 dataset [Fei-Fei et al., 2007] which, in preliminary tests, yielded
a mean accuracy of 97%. It was decided that this dataset was too small (roughly
300 x 200 pixels) and the amount of data that could feasibly be hidden inside
the images without saturating the image with data was too little to justify
the F5 algorithm. Instead, it was decided that the the personal part of the
Columbia Photographic Images and Photorealistic Computer Graphics Dataset
(PIM Dataset) [Ng et al., 2005] should be used due to the wide variety of image
subjects and high capture quality. These images were cropped to 640 x 480
pixels (cropped with reference to the centre of the image) to reduce the time
to parse and analyse the images. Once we did this, the accuracy of our neural
network dropped substantially to about 75%. Therefore a new network based on
the same ideas as the original network was created to perform more e↵ectively
but with a more complex feature set.

In this section, both the “Old Neural Network” and the “New Neural Network”
were described and evaluated on the PIM dataset. Each network section contain:
a flow diagram of the topology (overall structure) of the network; which allows
for easy comparing between the two networks; a description of the features
that were extracted; the results of evaluation of the network (the process of
which is explained in the next section) and a sample of training data to identify
overfitting in the network.
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3.1 Method

Python was used as the main language for all pre-processing, parsing and neural
network operations due to it’s ubiquity in the machine learning community (due
to its incredible flexibility and very high development speed), deep learning
libraries such as Keras simplify the coding of neural networks which allows
greater time e�ciency while doing experimental work.

3.1.1 Processing (Parsing) Images

The blank images with no steganographic data encoded in them from the PIM
Dataset were loaded into a directory. Half of those images were randomly se-
lected and encoded with random data: the amount of data was determined by
counting the number of non-zero discrete cosine transform coe�cients and mul-
tiplying them by a bpc (bits per coe�cient ratio). This data was encoded into
the image using the F5 steganographic algorithm [Westfeld, 2001a]. The dis-
crete cosine transform values of the images were extracted using a C++ program
[Ros, 2014] utilising libjpeg [Group et al., 2011]. Then labels which identify the
presence of steganographic data in a particular image along with the name of
the file were written to a file for use in the network.

3.1.2 Network Training

The reLU (rectified linear unit) [Nair and Hinton, 2010] activation function along
with the categorical cross entropy loss function [De Boer et al., 2005] paired
with the Adam optimizer [Kingma and Ba, 2014] were picked for their high
performance (section 2.3). During training the dataset was pseudo-randomly
split up into 2

3 training data and 1
3 test data.. Given that there were 800 images

in the original dataset and half of them were embed with a stego payload,
it is impossible for only one type of image to be present in the training (as
1
3 <

1
2 ). Keras (using the Tensorflow backend) was used to build and train the

models due to their popularity in the machine learning community as described
in section 2.3.3.2. The network was then trained on the training data, and the
performance of the network was evaluated using the test data.

3.1.3 Data Collection Workflow

The images were parsed as detailed in 3.1.1 using di↵erent values of the bpc co-
e�cient to encode di↵erent amount of data, allowing an observation of whether
more data encoded in the image had an e↵ect on the accuracy of the network
that will be shown in section 3.3. Then both the old and new neural networks
were trained and evaluated, detailed in 3.1.2, on the generated dataset.
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Figure 20: A flowchart to summarise the full parsing and data collection
process.
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3.2 Network Topologies

Figure 21: Topology of the old neural network.

Figure 22: Topology of the new neural network.
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3.2.1 Feature Extraction

3.2.1.1 Old Neural Network
Mean, variance, skew [Shaohui et al., 2003] and image dimensions were all ex-
tracted from the discrete cosine transform coe�cients of each layer of the image.
Then all of these statistics were normalised and fed into the input of the network.

3.2.1.2 New Neural Network
Mean, variance, skew [Shaohui et al., 2003] and image dimensions were all ex-
tracted from the discrete cosine transform coe�cients of each layer of the image
along with the same statistics across all of the raw image layers. Then all of the
statistics were normalised and fed into the input of the network.

3.2.2 Training

Each epoch denotes one forward and backward pass of all of the training exam-
ples. Batch size denotes the number of images in one forward/backward pass. It
was decided to use 300 epochs for the second network after experimental work,
starting at 40 (the first dataset) and increasing by steps of 10 until 300 was
reached upon as it allowed the network optimising well while the overfitting was
handled by the dropout layers. 128 batch size was decided because it allowed for
fast training (on the hardware available) without compromising the optimisa-
tion of the network. The accuracy and loss graph are closely related. Although
most of the analysis is on the loss graph, the accuracy follows the inverse of the
loss function i.e. if the loss function decreases, the accuracy will increase and
vice versa.
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3.2.2.1 Old Neural Network

Figure 23: Training loss and accuracy metrics of the old neural network.
Trained using 40 epochs with a batch size of 128.

The shape of the graph in Figure 23 shows that it is possible that the network has
reached a minimum, but the unevenness of the data suggests that the network
could benefit from more epochs of training data to allow the loss function to
further descend especially as there is evidence of the dropout layers working
(spikes near the end of training).
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3.2.2.2 New Neural Network

Figure 24: Training loss and accuracy metrics of the new neural network.
Trained using 300 epochs with a batch size of 128.

The spikes in Figure 24 indicate that the dropout layers are combating overfit-
ting as it can be seen that they are adding a penalty to the loss function. The
graph also shows that the number of epochs is allowing the network to reach
a local minimum (shown by the exponential decay shape), then the dropout
layers are then preventing it from overfitting too much (shown by the spikes, as
discussed previously).
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3.3 Data

Figure 25: Accuracy of the data collection plotted as a histogram for the old
neural network along with the mean.

Figure 26: Accuracy of the data collection plotted as a histogram for the new
neural network along with the mean.
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3.4 Analysis

BPC Mean Variance
0.01 73.835% 12.716
0.05 73.556% 7.283
0.1 73.243% 7.786
0.2 73.334% 8.069

Table 1: Summary of Old Neural Network statistics.

BPC Mean Variance
0.01 94.886% 70.886
0.05 96.875% 14.329
0.1 96.230% 15.759
0.2 95.960% 37.722

Table 2: Summary of New Neural Network statistics.

It can been seen in the old network Figure 25 that the mean stays in a narrow
range (lower: 73.06%, upper: 73.98%) throughout all of the tests regardless of
the amount of data encoded (bpc level). In the same vein, Figure 26 shows that
the mean doesn’t seem to vary based on the amount of data encoded (bpc).

The fact that the mean seems not to vary too much (variance of 0.687 and 0.177
(3 s.f) between the averages of the new neural network and old neural network
respectively from Tables 2 & 1) suggests that the neural network is detecting an
artefact of the F5 steganographic algorithm which is present when any amount
of data is encoded. If the network was detecting an artefact of the data encoded,
it would be expected that there would be a graduation in the accuracy as the
amount of data increased but it seems that this is not the case.

In the old neural network (Figure 25), it can be seen that the data is, for the
most part, quite evenly spread amongst the lower and upper bounds. Whilst
in the new neural network, it seems that the data is more concentrated around
the mean and there are a few extreme outliers (as shown by the variance).

These outliers can be explained by looking at the training graphs of the networks
(Figure 23 & 24). We claim that the outliers are caused by the dropout layers
activating just before training is finished. In essence, the outliers are caused
when the network stops training at one of the peaks of the loss function (when
the dropout has just added a penalty to the loss function) and the network has
not had time to correct it. This is backed up by the fact that it seems that the
outliers are more prevalent in the new neural network, which has more dropout
layers in the topology Figure 22 than the old neural network. The variance of
the two graphs (Figure 2 & 1) also suggests this as the overall variance of the
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new neural network (with more dropout layers) is higher than the old neural
network (with less dropout layers).
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4 Conclusion

It has been found that the Neural Networks created for this project can be used
very e↵ectively to detect images encoded with the F5 steganography algorithm,
even when using a less statistically complex feature set as in the ”old neural
network”. It was found that the neural network was able to successfully learn
to recognise features present in the images encoded with the F5 steganographic
algorithm that were present regardless of how much data was encoded in the
image (Figure 26).

There is evidence that suggests that as the statistical complexity of the network
features increases, the accuracy of the network increases. The old neural network
(simpler feature set) had a mean accuracy of 73% while the new neural network
(more complex feature set) had a mean accuracy of 97%. These very good
results were achieved by utilising a relatively simple feature set compared to
previous methods [Fridrich et al., 2002].

These results could result in finding a fingerprint (defined in 2.4.1) for the F5
algorithm. The fact that the network accuracy was independent of the amount
of data encoded in the image is indicative that the network is learning an artefact
of the process of the F5 algorithm. In future an artefact that is left behind by
the F5 steganographic algorithm (regardless of the amount of data encoded)
could be found.

From my reading, it seems that there is no example of a study that has reduced
statistical complexity with the goal to make up for it using a more complex
classification algorithm. Although there may be a similar study in the literature,
the fact that it has not been found during my reading means that if there is
such a study it has not had much of an impact.
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